T-1011 Run Summary

Tests of radiation-hard silicon microstrip sensors for CMS in S-LHC

CMS Tracker

Pixel region (R<20cm)

- Barrel , Forward
- 66M channels!
- PSI46 chip
 - 52 x 80 pixels
 - Sparcified at ROC
- Replacement in S-LHC phase I (and II)
 - 10¹⁶ 1 MeV n_{eq}
- Beam telescope at FNAL based on CAPTAN system
 - ~1 cm² beam spot required

Strip region (R>20cm)

- TIB, TID, TOB, TEC
- 200 m² sensor area!
- APV25 chip
 - 128 channels
 - Sparcified at FED
- Replacement in S-LHC phase II
 - 10¹⁵ 1 MeV n_{eq}
- Beam telescope at CERN (and now FNAL!) based on APV hybrids,
 CMS DAQ
 - Designed for 4x4 cm² beam spot

Two separate test beam efforts

Silicon Beam Telescope (SiBT) Group

- The SiBT group has participated in 5 beam tests in the CERN H2 line since 2007
 - Original focus was to explore Magnetic Czochralski silicon as a rad. hard option for S-LHC strip tracker regions.

http://www.hip.fi/research/cms/tracker/SiBT/php/home.php

T-1011 Personnel

- Brown University
 - A. Garabedian, D. Tersegno
- CERN
 - G. Auzinger
- FNAL
 - L. Spiegel
- HIP (Helsinki Institute of Physics)
 - D. Fusi, P. Luukka, T. Mäenppää, (H. Moilanen), T. Peltola, E. Tuovinen
- KIT (Universität Karlsruhe)
 - K. Hoffman
- Wayne State University
 - P. Lamichhane

CMS HPK Campaign

Over 100 6 inch wafers

Silicon technologies: Float Zone, Magnetic Czochralski, Epitaxial

Thicknesses: 320, 200, 120, 100, 70, 50 microns Bulk doping: n-type, p-type (p-stop, p-spray)

Timeline

- March 15 Received beam telescope late in afternoon after hangup with DHL/O'Hare resolved
- March 18 Safety approval
- March 19 Commissioning
- March 20 Start taking data with first set of DUTs
- March 23 Double spills starting in the afternoon!
- March 24 No beam all day
- March 27 Main program completed. Install "time permitting" modules

Silicon Beam Telescope

- Redeployed CMS "Vienna" system
- Telescope includes 4+4 reference planes and 2 DUT slots
- Modules typically installed in ±45°
 orientations due to height limitation
- Reference detectors are DO Run IIb HPK sensors (60 µm pitch with intermediate strips, 639 channels)
- Telescope active area is 4 x 4 cm².
- Readout electronics: CMS (TOB) hybrids
- DAQ software is a modified version of XDAQ

SiBT@FTBF

MSSD and Mpixel Modules

- 1) FZ₃20N_08_MSSD_1
- 2) FZ320P_01_MSSD_1
- 3) FZ200N_01_MSSD_1
- 4) FZ120N_02_MSSD_2
- 5) FZ320Y_04_MSSD_2
- 6) FZ200P_04_MSSD_1
- 7) FZ200Y_02_MSSD_2
- 8) E100N_02_MSSD_1
- 9) E50N_02_MSSD_1

FZ200N_06_Mpix_1

FZ320N_o1_Mpix_1

FZ320P_04_Mpix_1

FZ120N_06_Mpix_1

FZ320Y_05_Mpix_2

FZ200P_01_Mpix_2

FZ220Y_02_Mpix_2

E100N_02_Mpix_1

E50N_02_Mpix_1

Online Monitoring

Online Beam Spot

~1 cm² beam spot, preferred by primary user (T-992), required 7 table positions per voltage setting to cover 12 distinct regions per MSSD/Mpixel module.

Offline Alignment

Reference planes are aligned for each run (50k triggers) and this work will be done at Helsinki in the near future. The interpolation accuracy at slots 5 and 6 (DUT stations) is 4 μ m.

E vent Accumulation

As of yesterday afternoon

Thanks!

• The T-1011 group would like to express their gratitude for the many people at Fermilab who helped make the test beam run a success. In particular, we note the promptness in which the Lab responded to a request to double the number of spills per cycle. Without this change we would not have been able to complete our program.